Вопрос задан 01.12.2025 в 20:33. Предмет Математика. Спрашивает Фролова Саша.

|х|-15=9-5|х|

Перейти к ответам

Ответы на вопрос

Отвечает Сибирёва Мария.

Для решения уравнения |х| - 15 = 9 - 5|х| нужно рассмотреть два случая, так как выражение с абсолютной величиной имеет разные значения в зависимости от того, положительное ли число внутри абсолютной величины или отрицательное.

  1. Первый случай: х ≥ 0.
    В этом случае |х| = х, так как х неотрицательное. Подставляем это в уравнение:

    х15=95хх - 15 = 9 - 5х

    Переносим все х на одну сторону и числа на другую:

    х+5х=9+15х + 5х = 9 + 15 6х=246х = 24 х=246=4х = \frac{24}{6} = 4

    Таким образом, в первом случае х = 4. Так как 4 ≥ 0, это решение подходит.

  2. Второй случай: х < 0.
    В этом случае |х| = -х, так как х отрицательное. Подставляем это в уравнение:

    х15=95(х)-х - 15 = 9 - 5(-х)

    Упростим выражение:

    х15=9+5х-х - 15 = 9 + 5х

    Переносим все х на одну сторону и числа на другую:

    х5х=9+15-х - 5х = 9 + 15 6х=24-6х = 24 х=246=4х = \frac{-24}{6} = -4

    Таким образом, во втором случае х = -4. Поскольку -4 < 0, это решение также подходит.

Итак, решения уравнения |х| - 15 = 9 - 5|х| — это х = 4 и х = -4.

Топ вопросов за вчера в категории Математика

Математика 26.09.2025 06:47 124 Почётова Саша

Последние заданные вопросы в категории Математика

Задать вопрос