Вопрос задан 22.10.2025 в 14:35.
Предмет Геометрия.
Спрашивает Макаров Ньургун.
Докажите, что диаметр окружности больше любой хорды, отличной от диаметра.
Ответы на вопрос
Отвечает Исаева Даша.
Пусть — центр окружности радиуса , а — хорда, не являющаяся диаметром. Опустим из перпендикуляр на , пусть он пересекает её в точке . Известно, что перпендикуляр из центра к хорде делит её пополам, значит .
Рассмотрим прямоугольный треугольник . В нём гипотенуза равна , а катеты — и . В любом прямоугольном треугольнике гипотенуза больше любого катета, следовательно
Умножая на 2, получаем
Но — это диаметр окружности. Значит, длина любой хорды, отличной от диаметра, строго меньше диаметра. Что и требовалось доказать.
Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili

