Вопрос задан 11.09.2025 в 19:53. Предмет Математика. Спрашивает Синицына Виктория.

Какая из заданных пар чисел (-6;8), (0;-3), (2;0) является решением данной системы уравнений: х + у = 2, 3х - 2у = 6?

Перейти к ответам

Ответы на вопрос

Отвечает Каирдинова Яна.

Проверю пары подстановкой и заодно решу систему.

Система:

{x+y=2,3x2y=6.\begin{cases} x+y=2,\\ 3x-2y=6. \end{cases}

Сначала решу её: из первого уравнения y=2xy=2-x. Подставляю во второе:

3x2(2x)=6    3x4+2x=6    5x=10    x=2.3x-2(2-x)=6 \;\Rightarrow\; 3x-4+2x=6 \;\Rightarrow\; 5x=10 \;\Rightarrow\; x=2.

Тогда y=2x=22=0y=2-x=2-2=0. Значит решение системы — (2;0)(2;0).

Проверю заданные пары:

  • (6;8)(-6;8): x+y=6+8=2x+y=-6+8=2 — подходит первому, но 3x2y=3(6)28=1816=3463x-2y=3(-6)-2\cdot8=-18-16=-34\neq6 — не подходит.

  • (0;3)(0;-3): x+y=0+(3)=32x+y=0+(-3)=-3\neq2 — сразу не подходит.

  • (2;0)(2;0): x+y=2+0=2x+y=2+0=2 и 3x2y=3220=63x-2y=3\cdot2-2\cdot0=6 — оба уравнения выполняются.

Ответ: (2;0)(2;0).

Похожие вопросы

Топ вопросов за вчера в категории Математика

Математика 25.01.2025 12:57 150 Кеңесбеков Ғаламат

Последние заданные вопросы в категории Математика

Математика 08.09.2025 07:58 6 Белоусов Андрей
Задать вопрос