Вопрос задан 09.09.2025 в 19:18. Предмет Математика. Спрашивает Усольцев Александр.

Решите неравенство 4 - 7х ≥ 12 - 3х.

Перейти к ответам

Ответы на вопрос

Отвечает Черемисинова Кристина.

Решим по шагам:

47x123x4 - 7x \ge 12 - 3x

Перенесём все xx вправо/влево. Удобно добавить 7x7x к обеим частям:

4123x+7x=12+4x4 \ge 12 - 3x + 7x = 12 + 4x

Вычтем 12 из обеих частей:

4124x84x4 - 12 \ge 4x \Rightarrow -8 \ge 4x

Делим на 44 (число положительное, знак не меняется):

2xx2-2 \ge x \Rightarrow x \le -2

Проверка граничной точки x=2x=-2:
47(2)=4+14=184 - 7(-2) = 4 + 14 = 18, 123(2)=12+6=1812 - 3(-2) = 12 + 6 = 18, равенство верно.

Ответ: x2x \le -2 (интервал (,2] (-\infty,\,-2]).

Похожие вопросы

Топ вопросов за вчера в категории Математика

Математика 25.01.2025 12:57 136 Кеңесбеков Ғаламат

Последние заданные вопросы в категории Математика

Математика 08.09.2025 07:58 5 Белоусов Андрей
Задать вопрос