Вопрос задан 09.02.2026 в 06:33. Предмет Математика. Спрашивает Нухова Рияночка.

Решите систему уравнений: х + 2у = 7 2у² + ху = 14

Перейти к ответам

Ответы на вопрос

Отвечает Здравствуй Валерия.

Решаем систему:

{x+2y=7,2y2+xy=14.\begin{cases} x+2y=7,\\ 2y^2+xy=14. \end{cases}
  1. Из первого уравнения выражаем xx:

x=72y.x=7-2y.
  1. Подставляем во второе уравнение:

2y2+(72y)y=14.2y^2 + (7-2y)\,y = 14.

Раскрываем скобки и приводим подобные:

2y2+7y2y2=147y=14.2y^2 + 7y - 2y^2 = 14 \quad \Rightarrow \quad 7y = 14.
  1. Находим yy:

y=2.y=2.
  1. Подставляем y=2y=2 в x=72yx=7-2y:

x=722=74=3.x = 7 - 2\cdot 2 = 7 - 4 = 3.

Проверка во втором уравнении:

2y2+xy=222+32=8+6=14верно.2y^2 + xy = 2\cdot 2^2 + 3\cdot 2 = 8 + 6 = 14 \quad \text{верно}.

Ответ: (x,y)=(3,2)(x,y)=(3,2).

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Математика 10.12.2025 11:47 25 Васильева Александра
Задать вопрос