Вопрос задан 21.11.2025 в 14:19. Предмет Математика. Спрашивает Григорьева Алевтина.

Пло­щадь па­рал­ле­ло­грам­ма можно вы­чис­лить по фор­му­ле , где — сто­ро­ны па­рал­ле­ло­грам­ма (в мет­рах). Поль­зу­ясь этой фор­му­лой, най­ди­те пло­щадь па­рал­ле­ло­грам­ма, если его сто­ро­ны 10 м и 12 м и sin a=0,5.

Перейти к ответам

Ответы на вопрос

Отвечает Губин Никита.

Для того чтобы найти площадь параллелограмма, нужно использовать формулу:

S=absin(α)S = a \cdot b \cdot \sin(\alpha)

где:

  • aa и bb — это длины сторон параллелограмма,

  • α\alpha — угол между этими сторонами.

В вашем случае:

  • a=10a = 10 м,

  • b=12b = 12 м,

  • sin(α)=0.5\sin(\alpha) = 0.5.

Подставляем эти значения в формулу:

S=10120.5=60м2S = 10 \cdot 12 \cdot 0.5 = 60 \, \text{м}^2

Таким образом, площадь параллелограмма равна 60 квадратных метров.

Похожие вопросы

Топ вопросов за вчера в категории Математика

Математика 25.08.2025 00:03 41 Муратова Дмитрий

Последние заданные вопросы в категории Математика

Задать вопрос